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The Slater sum Sðr,�Þ is the diagonal element of the canonical or Bloch density matrix, and by
spatial integration yields the partition function. In one dimension, for independent electrons
moving in a common potential v(x), the work of March and Murray (Phys. Rev., 120, 831
(1960)) already yielded a third-order partial differential equation for Sðx,�Þ. But to date, a
generalization to higher dimensions for independent electrons in a given v(r) has not been
effected. Here, using the differential virial equation (Holas and March, Phys. Rev. A, 51,
2040 (1995)) such generalization is derived. As a special case, the known differential equation
for Sðr, �Þ for three-dimensional spherically symmetric harmonic confinement is recovered.
This equation is shown to be valid also for a wider, specific class of three-dimensional spherical
systems.

Keywords: Inhomogeneous electron liquid; Slater sum; Harmonic confinement

1. Background

In the early work of March and Murray [1], central-field problems in a potential vðjrjÞ
were analyzed using the canonical or Bloch density matrix. This central-field case is,
of course, analogous to a one-dimensional problem. One important result of their
work, written now specifically for one-dimensional motion in a common potential
energy v(x), was the third-order linear partial differential equation for the Slater sum
S, defined by

Sðx,�Þ ¼
Xall
j

 jðxÞ 
�
j ðxÞ expð���jÞ, � > 0, ð1Þ
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where  jðxÞ and �j are respectively the eigenfunctions and eigenvalues generated by the
potential v(x). In some applications � ¼ ðkBTÞ

�1, where kB is Boltzmann’s constant
while T is the absolute temperature. The above differential equation then reads

1

8

@3Sðx,�Þ

@x3
¼
@2Sðx,�Þ

@x@�
þ vðxÞ

@Sðx,�Þ

@x
þ
1

2

dvðxÞ

dx
Sðx,�Þ ð2Þ

(atomic units are used throughout this article).

2. Differential virial equation in terms of density and density matrix

In an attempt to generalize equation (2) to higher dimensions, we next invoke the
so-called differential virial equation derived by Holas and March [2]. If we consider
a noninteracting many-electron system moving in a general one-body potential v(r),
for arbitrary dimensionality of the space D ¼ 1, 2, . . . , we have

�nðr,EÞJvðrÞ ¼ zðr,EÞ �
1

4
JJ

2nðr,EÞ: ð3aÞ

Here, the kinetic vector

zðr,EÞ ¼ ÔOðr0, r00Þ�ðrþ r0; rþ r00,EÞjr0¼r00¼0, ð3bÞ

represents a combination of derivatives of the kinetic energy density tensor, so it can be
written as a vector differential operator ÔO acting on the Dirac density matrix

�ðr1; r2,EÞ ¼
Xall
j

�ðE� �jÞ jðr1Þ 
�
j ðr2Þ, ð4Þ

where � is the unit step function, �ð�Þ ¼ 1 for � � 0, �ð�Þ ¼ 0 for �<0. The particle-
number density is given as the diagonal of the matrix �:

nðr,EÞ ¼ �ðr; r,EÞ: ð5Þ

The normalized orbitals  jðrÞ and orbital energies �j are eigensolutions of the
one-electron Schrödinger equation

�
t̂tðrÞ þ vðrÞ

�
 jðrÞ ¼ �j jðrÞ, ð6aÞ

t̂tðrÞ ¼ �
1

2
J
2ðrÞ ¼ �

1

2

XD
�¼1

ð@=@r�Þ
2: ð6bÞ

The spin coordinate of the orbital is included to the label j. A constant such that
�j > 0 8 j is added to v(r).
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The � component of the differential operator ÔO [for construction of the kinetic
vector z, equation (3b)] is defined as

ÔO�ðr
0, r00Þ ¼

1

2

XD
�¼1

@

@r0�
þ

@

@r00�

 !
@2

@r0�@r
00
�
þ

@2

@r0�@r
00
�

 !
, � ¼ 1, 2, . . . ,D ð7Þ

(see Holas and March [2]). In the case when ÔO is acting on a real, symmetric
matrix [e.g., when �, equation (4), is constructed of real orbitals only], this operator
simplifies to

ÔO�ðr
0, r00Þ ¼

XD
�¼1

@

@r0�
þ

@

@r00�

 !
@2

@r0�@r
00
�
: ð8Þ

3. Differential virial equation in terms of Slater sum and canonical density matrix

The Dirac density matrix �ðr1; r2,EÞ, equation (4), is related to the canonical density
matrix

Cðr1; r2,�Þ ¼
Xall
j

 jðr1Þ 
�
j ðr2Þ expð���jÞ, � > 0, ð9Þ

by the Laplace transform (March and Murray [1])

��1Cðr1; r2,�Þ ¼

Z 1

0

dE �ðr1; r2,EÞ expð��EÞ, ð10Þ

and this transform relates also the density nðr,EÞ, equation (5), to the diagonal of C —
the canonical particle-number density (called the Slater sum, the object of our interest)

Sðr,�Þ ¼ Cðr; r,�Þ: ð11Þ

The canonical density matrix, equation (9), satisfies the Bloch equation [3]

�
t̂tðr1Þ þ vðr1Þ

�
Cðr1; r2,�Þ ¼ �

@Cðr1; r2,�Þ

@�
: ð12Þ

By inserting r1 ¼ r2 ¼ r, the � derivative of the Slater sum is obtained

@Sðr,�Þ

@�
¼ �kðr,�Þ � vðrÞSðr,�Þ, ð13aÞ
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where the canonical kinetic energy density is

kðr,�Þ ¼
1

2

�
t̂tðr0Þ þ t̂tðr00Þ

�
Cðrþ r0; rþ r00,�Þjr0¼r00¼0 ð13bÞ

(this symmetric expression is an average of two equivalent forms).
After applying the Laplace transform to both sides of equation (3a), we obtain

immediately the sought for differential equation for the Slater-sum function

�Sðr,�ÞJvðrÞ ¼ Zðr,�Þ �
1

4
JJ

2Sðr,�Þ, ð14aÞ

where the canonical kinetic vector

Zðr,�Þ ¼ ÔOðr0, r00ÞCðrþ r0; rþ r00,�Þjr0¼r00¼0, ð14bÞ

is, in fact, the Laplace transform of the kinetic vector zðr,EÞ, equation (3b).
Equation (14) represents the main result of our article.

4. Proof of generalization

To see that equation (14) is really a generalization to higher dimensions of the one-
dimensional equation (2), let us rewrite this equation (14) for D¼ 1, reducing r to x:

�Sðx,�Þ
dvðxÞ

dx
¼ Zðx,�Þ �

1

4

@3Sðx,�Þ

@x3
, ð15aÞ

where, according to equations (14b) and (7),

Zðx,�Þ ¼
@

@x0
þ

@

@x00

� �
@2

@x0@x00
Cðxþ x0; xþ x00,�Þjx0¼x00¼0: ð15bÞ

To make equation (2) comparable with equation (15a), we substitute for @Sðx,�Þ=@�
the expression given in equation (13a) and obtain, after a simple algebra,

�Sðx,�Þ
dvðxÞ

dx
¼ ~ZZðx,�Þ �

1

4

@3Sðx,�Þ

@x3
; ð16aÞ

where

~ZZðx,�Þ ¼
@

@x
2 kðx,�Þ þ

1

2

@2Sðx,�Þ

@x2

� �
: ð16bÞ
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With the help of equations (13b) and (11), this ~ZZ can be rewritten as

~ZZðx,�Þ ¼
1

2

@

@x
�

@

@x0

� �2

�
@

@x00

� �2

þ
@

@x

� �2
 !

Cðxþ x0; xþ x00,�Þjx0¼x00¼x: ð17Þ

After replacing @=@x by ð@=@x0 þ @=@x00Þ, we arrive at

~ZZðx,�Þ ¼ ~̂oo~ooðx0, x00ÞCðxþ x0; xþ x00,�Þjx0¼x00¼0, ð18aÞ

where

~̂oo~ooðx0, x00Þ ¼
1

2

@

@x0
þ

@

@x00

� �
�

@

@x0

� �2

�
@

@x00

� �2

þ
@

@x0
þ

@

@x00

� �2
 !

¼
1

2

@

@x0
þ

@

@x00

� �
2
@

@x0
@

@x00

� �
: ð18bÞ

Thus ~ZZðx,�Þ, equation (18), coincides with Zðx,�Þ, equation (15b). This ends the proof
that our generalization, equation (14), taken for D¼ 1 is equivalent to the early result
derived by March and Murray [1] for D¼ 1, equation (2). Although equation (2)
involves only two functions — the system potential v and the Slater sum S — together
with their derivatives (including the derivative of S with respect to �), it can be rewritten
in a form where the � derivative is eliminated, but at the cost of involving spatial
derivatives of the canonical density matrix C [taken at its diagonal, see equation (18)].
The generalization to higher dimensions repeats this last form, i.e., it involves both S
and C, equation (14).

5. Example of three-dimensional isotropic harmonic oscillator

For the system of independent electrons in D¼ 3 moving in the isotropic harmonic (IH)
confinement

vðrÞ ¼ vðr,!Þ ¼
1

2
!2r2 ð19Þ

(the constant !2 controls its strength), the canonical density matrix is known
(Sondheimer and Wilson [4])

Cðr1; r2,�,!Þ ¼ Nð�,!Þ exp �!Að�!Þ
r1 þ r2

2

� �2
�!Bð�!Þ

r1 � r2

2

� �2� �
, ð20aÞ

where

Nð�,!Þ ¼
!

2� sinhð�!Þ

� �3=2
, Að�!Þ ¼ tanhð�!=2Þ, Bð�!Þ ¼ 1=Að�!Þ: ð20bÞ
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The Slater sum, equation (11), follows from it in the form

Sðr,�,!Þ ¼ Nð�,!Þ exp �!Að�!Þ r2
� �

: ð21Þ

We are going to verify that the above written canonical density matrix C and the
Slater sum S satisfy our equation (14). Due to the isotropy of the system, this vector
equation reduces to one equation for the radial component (formally, after multiplying
equation (14) by @r=@r, i.e., r=r)

�Sðr,�,!Þ
@vðr,!Þ

@r
¼ Zradðr,�,!Þ �

1

4

@

@r
J
2Sðr,�,!Þ, ð22aÞ

where the radial component of the canonical kinetic vector is

Zradðr,�,!Þ ¼
X
�

r�
r
Z�ðr,�,!Þ: ð22bÞ

It can be evaluated immediately using results obtained in Appendix A. By comparing
equation (20a) with equations (A4) and (A3) we find for the IH confinement

~CCð�1, �2, �3,�,!Þ ¼ Nð�,!Þ exp
�
�!Að�!Þ�1 � !Bð�!Þ�2

�
ð23Þ

(here ~CC happens to be independent of �3). The 2nd- and 3rd-order derivatives of ~CC,
which occur in equation (A8), are evaluated according to equation (A9) applied to
equation (23). The results are

~CC200 ¼ ð!AÞ2S, ~CC110 ¼ !A!BS ¼ !2S, ð24aÞ

~CC300 ¼ �ð!AÞ3S, ~CCijl ¼ 0 for l 6¼ 0: ð24bÞ

After inserting them into equation (A8) we obtain finally

Zradðr,�,!Þ ¼
�
5ð!AÞ2r� !2r� 2ð!AÞ3r3

�
Sðr,�,!Þ: ð25Þ

Due to the spherical symmetry of S, the term involving its Laplacian

J
2Sðr,�,!Þ ¼

@

@r

� �2

þ
2

r

@

@r

" #
Sðr,�,!Þ ð26aÞ

in equation (22a) is

@

@r
J
2Sðr,�,!Þ ¼

@

@r

� �3

þ
2

r

@

@r

� �2

�
2

r2
@

@r

" #
Sðr,�,!Þ: ð26bÞ
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Differentiation of S, which is given in equation (21), gives

@S

@r
¼ �2!ArS,

@2S

@r2
¼
�
�2!Aþ ð2!ArÞ2

�
S,

@3S

@r3
¼
�
3ð2!AÞ2 � ð2!ArÞ3

�
S: ð27Þ

So

�
1

4

@

@r
J
2Sðr,�,!Þ ¼

�
�5ð!AÞ2rþ 2ð!AÞ3r3

�
Sðr,�,!Þ: ð28Þ

By noting that the derivative of the IH potential, equation (19), is @vðr,!Þ=@r ¼ !2r,
we see that the sum of equations (25) and (28) equals �S@v=@r, so equation (22a) is
really satisfied.

Amovilli and March [5] derived the following partial differential equation for the
Slater sum of the considered system:

1

8

@

@r

� �3

þ
1

4r

@

@r

� �2

�
1

4r2
þ vðr,!Þ þ

@

@�

� �
@

@r
þ
1

2

@vðr,!Þ

@r

" #
Sðr,�,!Þ ¼ 0: ð29Þ

With the help of equation (26) it can be rewritten as

1

8

@

@r
J
2Sðr,�,!Þ � vðr,!Þ þ

@

@�

� �
@Sðr,�,!Þ

@r
þ
1

2

@vðr,!Þ

@r
Sðr,�,!Þ ¼ 0: ð30Þ

After eliminating @S=@� with the help of equation (13a) and some simple algebra the
following equation is obtained

�Sðr,�,!Þ
@vðr,!Þ

@r
¼
@

@r

2

3
kðr,�,!Þ þ

1

3
J
2Sðr,�,!Þ

� �
�
1

4

@

@r
J
2Sðr,�,!Þ: ð31Þ

This radial equation for the Slater sum in terms of r is quite similar to the
one-dimensional equation in terms of x, equation (16). When compared with
equation (22a), we see that

Zalt
radðr,�,!Þ ¼

@

@r

2

3
kðr,�,!Þ þ

1

3
J
2Sðr,�,!Þ

� �
, ð32Þ

plays the role of an alternative expression for the radial component of the canonical
kinetic vector. The coefficients in the expression for Zalt

radðr,�,!Þ are different than in
its one-dimensional analogue ~ZZðx,�Þ, equation (16b).

To evaluate Zalt
rad, let us differentiate kðr,�,!Þ from equation (A10), remembering

that in the present system ~CCijl ¼ 0 for l 6¼ 0, and that arguments of ~CCijl are given in
equation (A9b):

@kðr,�,!Þ

@r
¼
@

@r
�
3

4
ð ~CC100 þ ~CC010Þ �

1

2
~CC200r

2

	 

¼ �

5

2
~CC200 �

3

2
~CC110 � ~CC300r

2: ð33Þ
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Having this result for @k=@r [with the values of ~CCijl taken from equation (24)], and
equation (28) for the Laplacian term, we obtain from equation (32) the final expression
for the alternative radial component of the kinetic vector

Zalt
radðr,�,!Þ ¼

2

3
�
5

2
ð!AÞ2r�

3

2
!2rþ ð!AÞ3r3

	 

S�

4

3
�5ð!AÞ2rþ 2ð!AÞ3r3
� �

S

¼ 5ð!AÞ2r� !2r� 2ð!AÞ3r3
� �

Sðr,�,!Þ: ð34Þ

As we see, this expression, obtained from Sðr,�,!Þ by means of differentiations (includ-
ing also @=@�) is exactly the same as the radial component of the kinetic vector
Zradðr,�,!Þ, equation (25), obtained from the Bloch matrix Cðr1; r2,�,!Þ by means of
differentiations. Thus the Amovilli–March [5] partial differential equation for the
Slater sum of the IH system, equation (29), is equivalent to the the radial component,
equation (22a), of our generalization, equation (14a), at D¼3.

6. Other three-dimensional isotropic systems

It would be interesting to check if the Amovilli–March [5] partial differential equation
for the Slater sum obtained specifically for the IH system, equation (29), is valid
for other isotropic systems. For that reason we should evaluate Zalt

radðr,�,!Þ,
equation (32) and Zradðr,�,!Þ, equation (22b), both for a general isotropic system
and compare them.

The results obtained in the Appendix A, equations (A10) and (A11), applied directly
to Zalt

radðr,�,!Þ, equation (32), yield

Zalt
radðr,�,!Þ ¼

@

@r

2

3
�
1

2

� �
3

2
ð ~CC100 þ ~CC010Þ þ ð ~CC200 þ 2 ~CC001Þr

2

	 

þ
1

3
6 ~CC100 þ 4 ~CC200r

2
h i� �

¼
@

@r

3

2
~CC100 �

1

2
~CC010 þ ~CC200 �

2

3
~CC001

� �
r2

	 


¼ 5 ~CC200 � ~CC110 �
4

3
~CC001

� �
rþ 2 ~CC300 �

4

3
~CC101

� �
r3: ð35Þ

Let us compare this result (35) with Zradðr,�,!Þ given in equation (A8). The coefficients
at ~CC200, ~CC110, and ~CC300, are the same, while those at ~CC001 and ~CC101 are different. This
means that the Amovilli–March [5] partial differential equation for the Slater sum,
equation (29), is not valid for a general isotropic system. However, it is valid for specific
isotropic systems having the canonical density matrix in the form

Cðr1; r2,�Þ ¼ ~CC
�
�1ðr1, r2Þ, �2ðr1, r2Þ,�

�
ð36Þ

[see equation (A3) for �a]. It differs from C for a general isotropic system,
equation (A4), by being independent of �3ðr1, r2Þ (therefore resulting in ~CCij1 ¼ 0),
however, the form of its dependence on �1 and �2 remains arbitrary. In the case of
the IH system — an example of this specific isotropic system — that dependence is
exponential, equation (20a).
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7. Conclusions

Equation (14) — our main result — represents generalization to higher dimensions
of the March–Murray [1] one-dimensional differential equation for the Slater sum,
equation (2). For isotropic systems, this vector equation (14) reduces to the radial-
component equation (22). The Amovilli–March [5] differential equation for the Slater
sum of the isotropic harmonic-potential system, equation (29), is shown to be valid
also for a wider class of isotropic three-dimensional systems having the canonical
density matrix in the form (36).
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Appendix A: Canonical kinetic vector and kinetic

energy density for spherical systems

For spherical (isotropic) systems, characterized by vðrÞ ¼ vðjrjÞ, the eigensolution of the
one-electron equation (6) can be written in the form [6] f�ln, lnmðrÞg, labeled with the
orbital quantum number (QN) l ¼ 0, 1, . . . , the magnetic QN m ¼ �l, ð�lþ 1Þ, . . . , l,
and the radial QN n ¼ 0, 1, . . . , where

 lnmðrÞ ¼ r�1�lnðrÞYlm ð̂rrÞ, r ¼ jrj, r̂r ¼ r=r, ðA1Þ

with �lnðrÞ being the real eigenfunction of the radial Schrödinger equation, and
Ylm ð̂rrÞ — the spherical harmonic function. The Dirac matrix, equation (4), for this
system is therefore

�ðr1; r2,EÞ ¼
X1
l¼0

Rlðr1; r2,EÞPl ð̂rr1 � r̂r2Þ, ðA2aÞ

where, including the spin degeneration,

Rlðr1; r2,EÞ ¼ 2
X
n

�ðE� �lnÞ r
�1
1 �lnðr1Þ r

�1
2 �lnðr2Þð2lþ 1Þ=ð4�Þ ¼ Rlðr2; r1,EÞ, ðA2bÞ

and Plð	Þ is the Legandre polynomial, because it satisfies the identity

Xl
m¼�l

Ylm ð̂rr1ÞY
�
lm ð̂rr2Þ ¼

2lþ 1

4�
Pl ð̂rr1 � r̂r2Þ: ðA2cÞ

As we see, the Dirac matrix �, equation (A2a), depends on three scalar variables r1, r2,
and 	 ¼ r̂r1 � r̂r2 — three invariants constructed of two vectors r1 and r2. This matrix is
symmetric in r1 $ r2 and real. The canonical density matrix Cðr1; r2,�Þ, equation (9),
being the Laplace transform of �ðr1; r2,EÞ, equation (10), shows the same properties.
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Therefore, the simplified form of the differential operator ÔO�ðr
0, r00Þ, equation (8), acting

on C can be applied.
It will be convenient to consider C to be a function of three other invariants, namely

�1ðr1, r2Þ ¼
r1 þ r2

2

� �2
¼

1

4
r21 þ r22 þ 2r1r2	
� �

, ðA3aÞ

�2ðr1, r2Þ ¼
r1 � r2

2

� �2
¼

1

4
r21 þ r22 � 2r1r2	
� �

, ðA3bÞ


ðr1, r2Þ ¼
r21 � r22

2
¼

r21 � r22
2

: ðA3cÞ

The constraint


2 � 4�1�2 ðA3dÞ

should be imposed in order to have ð̂rr1 � r̂r2Þ
2
� 1 satisfied. The set f�1, �2, 
g of invariants

is equivalent to the original set fr1, r2, 	g because, besides the transformation
fr1, r2, 	g ! f�1, �2, 
g, shown above, a reciprocal transformation is possible:
r1 ¼ ð�1 þ �2 þ 
Þ

1=2, r2 ¼ ð�1 þ �2 � 
Þ
1=2, 	 ¼ ð�1 � �2Þ

�
ð�1 þ �2Þ

2
� 
2

��1=2
. While �1

and �2 are symmetric in r1 $ r2, 
 is antisymmetric. Therefore C should depend on

�3ðr1, r2Þ ¼ 
2ðr1, r2Þ ¼
ðr1 � r2Þðr1 þ r2Þ

2

	 
2
ðA3eÞ

rather than on 
 to preserve the symmetry:

Cðr1; r2,�Þ ¼ ~CCð�1, �2, �3,�Þ: ðA4Þ

In terms of ~CC, the Slater sum is

Sðr,�Þ ¼ Cðr; r,�Þ ¼ ~CCðr2, 0, 0, �Þ ¼ Sðr,�Þ: ðA5Þ

When evaluating kðr,�Þ, equation (13b) with (6b), or Z�ðr,�Þ, equation (14b) with (8),
the chain-rule differentiation of C is applied, e.g.,

@

@r0�
Cðrþ r0; rþ r00,�Þ ¼

X3
a¼1

@ ~CCð�1, �2, �3,�Þ

@�a

@�aðrþ r0, rþ r00Þ

@r0�
: ðA6Þ

According to equation (A3) in the three-dimensional space, the functions
�aðrþ r0, rþ r00Þ, a ¼ 1, 2, 3, which occur in equation (A6), are

�1, �2, �3 ¼
X3
�¼1

1

4
ð2r� þ r0� þ r00�Þ

2,
X3
�¼1

1

4
ðr0� � r00�Þ

2,
1

4

X3
�¼1

ðr0� � r00�Þð2r� þ r0� þ r00�Þ

 !2

:

ðA7Þ

Second and third derivatives of C are evaluated similarly.
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After all differentiations and a tedious but straightforward algebra, the following

result is obtained for the radial component of the canonical kinetic vector,

equation (22b),

Zradðr,�,!Þ ¼ ð5 ~CC200 � ~CC110 � 8 ~CC001Þrþ ð2 ~CC300 � 4 ~CC101Þr
3, ðA8Þ

where

~CCijl ¼
@iþjþl ~CCð�1, �2, �3,�Þ

ð@�1Þ
i
ð@�2Þ

j
ð@�3Þ

l







0

, ðA9aÞ

taken at r0 ¼ r00 ¼ 0, i.e., at

ð�1, �2, �3,�Þ ¼ ðr2, 0, 0, �Þ: ðA9bÞ

The kinetic energy density kðr,�Þ, equation (13b), for isotropic systems can be also

evaluated using the same methods. The result is

kðr,�Þ ¼ �
1

2

3

2
ð ~CC100 þ ~CC010Þ þ ð ~CC200 þ 2 ~CC001Þr

2

	 

: ðA10Þ

Finally, evaluation of the Laplacian of S, equation (26a), for S given in equation (A5),

results in

J
2Sðr,�Þ ¼ 6 ~CC100 þ 4 ~CC200r

2: ðA11Þ
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